
can reach by simulating the execution of the graph by a dynamic
dataflow machine. This type of search suffices, for the system in
this figure, to show that the subsystem consisting of actors 2, 3,
and 4 never need have more than one token on any arc. Further-
more, it behaves as a whole like a synchronous actor, reading one
token from actor 1 and writing one token to actor 5.

An alternative approach is to construct a preamble, which is a
sequence of actor executions that eliminates any delays on bool-
ean arcs. In this case, executing actors 1 and 2 in the preamble
will suffice; this transforms the system to a system that has
bounded cycle length.

If the graph cannot be scheduled in bounded memory, the state
enumeration procedure described above will not terminate. One
possible solution to this difficulty is to impose an upper bound to
the number of tokens that may appear on each arc, according to
some heuristic, and to assume that there is a problem if this
bound is exceeded. A technique similar to this is used in Ptole-
my’s dynamic dataflow scheduler [5].

It is also possible to terminate the state enumeration algorithm
“in the other direction”, with an indication that unbounded mem-
ory is definitely required, by a type of mathematical induction. In
graphs such as Gao’s example discussed earlier, it is possible to
show that, by starting in a state with tokens on a particular arc,
we must always reach a state that has tokens on that same
arc but is otherwise the same, for any value of , given certain
boolean outcomes.

SYSTEMS REQUIRING UNBOUNDED MEMORY

Researchers pursuing this problem have used the label “well-
behaved” to describe systems with bounded memory require-
ments, but perfectly valid problems may require unbounded
memory; consider a parser for a context-free programming lan-
guage, for example. The traditional solution to such problems has
been to use dynamic scheduling with dynamic memory alloca-
tion. However, in any such problem there are usually subsystems
that each require bounded memory, so it is still advantageous to
cluster the graph so as to be able to use static memory allocation
for arcs that can be demonstrated to require bounded memory.
The clustering algorithm described in this paper accomplishes
this task readily.

Some complex and irregular graphs will not be successfully clus-
tered by our algorithm, and state enumeration requires a heuristic
to avoid exploring the (possibly infinite) state space forever.
Because of this, some graphs that have bounded-memory sched-
ules may not be handled successfully by these techniques. If so,
some dynamic memory allocation will be used even though it is
not actually required. However, graphs composed only of the
“well-behaved” structures appearing in the dataflow literature are
handled successfully.

It must be noted that the general problem of determining whether
a BDF graph can be scheduled with bounded memory is undecid-
able (equivalent to the halting problem); this is because BDF
graphs are Turing-equivalent. Given this, it should not be surpris-
ing that the techniques presented here give only a partial solu-
tion.

FURTHER WORK

We are currently implementing these scheduling techniques for
use in the Ptolemy system, a multi-paradigm simulation and pro-
totyping environment [5]. The first application will be code gen-
eration for digital signal processing problems from dynamic
dataflow graphs with a single-processor target. We hope to dem-

N
N 1+

N

onstrate an efficient, high-quality code generator to increase the
power of those previously implemented in Ptolemy and its prede-
cessor system, Gabriel [7]. The looped structure produced by the
clustering algorithm, with a bit of postprocessing to eliminate
duplicate tests, is suitable for code generation for a single proces-
sor.

Extension to multiple-processor scheduling by extending tech-
niques such as those of [6] to support data-dependent actors are
also contemplated. For the special case of bounded-cycle-length
graphs, minimax scheduling is the logical criterion, especially in
hard-real-time systems. For the more general case of data-depen-
dent iteration, we plan to apply techniques from [9].

REFERENCES

[1] E. A. Lee, “Consistency in Dataflow Graphs”, IEEE Trans-

actions on Parallel and Distributed Systems, Vol. 2, No. 2,

April 1991.

[2] G.R. Gao, R. Govindarajan, P. Panangaden, “Well-

Behaved Dataflow Programs for DSP Computation,”,

Proc. ICASSP 1992, San Francisco, California, March

1992.

[3] E. A. Lee and D. G. Messerschmitt, “Synchronous Data

Flow” IEEE Proceedings, September, 1987.

[4] J.B. Dennis, “First Version Data Flow Procedure Lan-

guage”, Technical Memo MAC TM61, May, 1975, MIT

Laboratory for Computer Science

[5] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy:

a Framework for Simulating and Prototyping Heteroge-

neous Systems”, International Journal of Computer Simu-

lation, to appear.

[6] G. Sih, “Multiprocessor Scheduling to Account for Inter-

processor Communication”, Ph.D. Thesis, Memorandum

No. UCB/ERL M91/29, UC Berkeley, CA 94720, April 22,

1991

[7] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and

E.A. Lee, “Gabriel: A Design Environment for DSP,” IEEE

Micro, October 1990, Vol. 10, No. 5, pp. 28-45.

[8] J. Buck and E. A. Lee, “The Token Flow Model,” pre-

sented at Data Flow Workshop, Hamilton Island, Australia,

May, 1992.

[9] S. Ha, “Compile-Time Scheduling of Dataflow Program

Graphs with Dynamic Constructs,” Ph.D. Dissertation,

EECS Dept., University of California, Berkeley, CA

94720, April 1992.

[10]

above for the average rates of tokens produced and consumed,
we obtain the solution vector

where k is arbitrary. One interpretation for this vector is that it
gives the relative firing rates for the actors in figure 1. As this
solution exists regardless of the value of , the graph is said to
be strongly consistent.

If we solve the balance equations for Gao’s example, where
actors 3 and 4 consume and produce two tokens, we obtain

.

Again, this solves the balance equations regardless of the value
of , even though we can show that executing this graph
requires unbounded memory. We distinguish the two cases by
solving for the number of actor executions in the cycle as a func-
tion of the number, rather than the proportion, of true tokens on
boolean streams. For a firing sequence consisting of firings of
actor 7, we obtain

for the case where actors produce and consume a single token.
Here is the number of boolean tokens produced and is the
number of true valued tokens. The smallest integer solution has

, and thus defines a minimal cycle (may be either 0 or
1 for the cycle, depending on the value of the boolean token pro-
duced). For Gao’s example the balance equations yield

.

This vector represents the number of firings of each actor, given
that actor 7 fires times. Since we can’t have fractional firings,
each term in the above vector must be an integer. Since no fixed
value of can guarantee this, an unbounded cycle length may
result. Note that this alone is not sufficient to prove that the mem-
ory requirement is unbounded, however. All that we have shown
is that there is no upper bound on the number of actor firings
required to return the graph to its original state.

By solving for the number of executions of each actor in a cyclic
schedule and demonstrating that it is bounded, we establish one
of the two conditions needed for assuring that the graph can be
scheduled with bounded cycle length. We must also establish that
the graph does not deadlock. This is done by constructing the
annotated acyclic precedence graph, a graph giving the data
dependencies of the actor executions (see [1] for how this is
done). These two conditions are necessary and sufficient for
existence of a bounded cyclic schedule.

DATA-DEPENDENT ITERATION; CLUSTERING

Data-dependent iteration results in cycles of unbounded length
even though only bounded memory is required. Such graphs can

r p() k 1 1 1 p
b

− p
b

1 1 1, , , , , ,()=

p
b

k 2 2 1 p
b

− p
b

2 2 2, , , , , ,()

p
b

n

n n n n
T

− n
T

n n n, , , , , ,()

n n
T

n 1= n
T

n n
n n

T
−

2

n
T

2
n n n, , , , , ,()

n

n

b1 1

3

1

S
W

IT
C

H

T

F

1

5

4

2

1

1 1

2

Figure 5. A graph with data-dependent iteration that
is readily handled by clustering.

proved to require bounded memory by applying a clustering
algorithm. Because of space limitations, the algorithm will only
be described qualitatively here. The goal of the clustering algo-
rithm is to map the graph into its traditional control structures
such as if-then-else and do-while, whenever possible. The sub-
structures are treated as atomic actors from their exterior. If the
interior of each control structure has a bounded cyclic schedule,
the graph can be scheduled in bounded memory. For example, in
the dataflow equivalent of a do-while, we wish to check that each
iteration of the loop executes a bounded number of actors and
subclusters.

We say that two adjacent actors have the same sample rate if they
are connected by an arc and the source star always writes the
same number of tokens on the arc as the destination star reads.
The clustering algorithm operates by alternately applying two
types of transformations.

The first series of transformations is called the merge pass. In this
phase, adjacent actors with the same sample rate are merged into
a single cluster, where possible. Actors may not be merged if this
would create deadlock, or if the resulting cluster would not be a
BDF actor (for example, it may depend on a control arc which is
hidden by the merge operation).

The second series of transformations is called the loop pass. In
this phase, clusters are iterated, made conditional, or placed in a
do-while loop as necessary to cause them to match the sample
rates of their neighbors.

The two types of transformations are alternated until no more
changes are possible. At this point, if the interior of each cluster
has a schedule of bounded length, and the top-level cluster does
as well, then the entire graph can be scheduled with bounded
memory. This technique is, in a sense, the reverse of that of Gao
and Dennis [2,4] in that the analysis finds the fundamental con-
structs rather than requiring that the graph be built up out of
them.

For example, the graph in figure 5 does not correspond to any of
the traditional dataflow loop schema. However, actors 1 through
4 can be combined into a single cluster because of their common
sample rate. If this cluster is then executed repeatedly until a
false token is produced by actor 3, the cluster as a whole will pro-
duce one token, and thus operate exactly like a synchronous data-
flow actor.

STATE ENUMERATION

For graphs with delays on Boolean arcs, such as in figure 6, the
techniques presented so far do not suffice; clustering reduces the
graph to a simpler system, but it is still necessary to assure that
the simpler system can be scheduled in bounded memory. We can
show that the graph in the figure is strongly consistent by assum-
ing that , but the skew between the two boolean streams

(one is the delay of the other) may present problems. One tech-
nique that can be used is to enumerate the states that the system

S
W

IT
C

H

T

F
1 54

1

b2
1

S
E

L
E

C
T

3

T

F
2

b1
1

1 1 1

1

11

FALSE

Figure 6. A do-while construct. Both clustering and
state enumeration are required to handle this case.

p1 p2=

has a bounded cycle length, and sufficient conditions for bounded
memory.

PRIOR WORK

We define dynamic dataflow actors to be actors for which the
number of tokens consumed or produced by a firing cannot be
specified statically. Typical examples are the SWITCH and
SELECT which route tokens depending on a Boolean input, as
shown in figure 3. Because of the difficulty in determining mem-
ory requirements of a dataflow graph with dynamic actors, sev-
eral authors have proposed restricting their use to particular
patterns or schema that can be shown to result in a bounded stor-
age requirement [2,4]. Thus, for example, Gao et. al. permit such
actors only in conditional or loop schema [2]. They call graphs
that require bounded memory well-behaved.

In [1], Lee demonstrates how to assure that the long-term aver-
age flow rates on each arc of a dynamic dataflow graph are con-
sistent, but as is shown by Gao et. al. [2], Lee’s “strongly
consistent” criterion is not sufficient to guarantee bounded mem-
ory requirements.

In the token flow model of [1], the number of tokens produced or
consumed by an actor is either constant, as in the SDF model, or
given by a symbolic function of the proportion of TRUE tokens
on the Boolean streams in the system (see figure 4). The precise
conditions on actors is that the number of tokens produced or
consumed on each arc must either be constant, or a function of a
Boolean-valued token produced or consumed on another arc,
which is called a control arc. A control arc that controls an output
arc may itself be an input or output arc; if it controls an input arc,
it must be an input. This restriction enables a scheduler to exe-
cute actors correctly by looking only at the Boolean streams.
Actors that satisfy these conditions are called Boolean-controlled
dataflow actors, or BDF actors for short.

The quantities that appear in the figure are open to several
interpretations. Loosely, is the long-term proportion of TRUE
tokens in the boolean stream , which supplies the control
inputs. Several interpretations are possible: in a probabilistic
interpretation, it is the marginal probability that a token selected
from is true, though this requires that the boolean stream be

S
W

IT
C

H
T

F

S
E

L
E

C
T

1

3

4

6

7

T

F
52

b1 b2

Figure 3. An if-then-else dataflow graph. The numbers
adjacent to the arcs merely identify them.

1

2 3

4 5

6

7
8

SWITCH

T F SELECT

T F

1

p
i 1 p

i
−

b
i

1

b
i

1

1

p
i 1 p

i
−

Figure 4. Dynamic actors with symbolic expressions
for the number of tokens produced or consumed on
each arc.

p
i

p
i

b
i

b
i

stationary in the mean to be well-defined. Fortunately, we do not
require this; for most dataflow graphs, we can interpret the quan-
tity as the proportion of TRUE tokens in a well-defined finite
sequence of actor executions corresponding to a complete cycle,
a sequence of actor executions that returns the graph to its origi-
nal state.

To determine whether a graph is strongly consistent, the “balance
equations” require us to determine a number of repetitions for
each actor that will cause the number of tokens produced and
consumed on each arc to be equal. In general, this solution will
be a symbolic function of the . If the balance equations have
nontrivial solutions regardless of the values of the boolean pro-
portions, the graph is said to be strongly consistent. If solutions
only exist for some values, the graph is weakly consistent; such
graphs are usually errors. The graph in figure 3 is strongly con-
sistent, as we will now show. We form the topology matrix

, in which the element indicates the number of tokens
written by actor i onto arc j, which is in general a function of ,
the vector of values. Negative entries indicate that the actor
consumes rather than produces tokens. For figure 3 we have the
following topology matrix:

(1)

We now attempt to find a repetition vector such that

.

We consider only nontrivial solutions (note that the zero vector is
always a solution). In practice, fast techniques exist to find solu-
tions to the balance equations; the techniques of [3] are readily
extended to the BDF case.

If all actors except the SWITCH and SELECT in figure 3 pro-
duce and consume a single token when they fire, then the graph
can be executed with bounded memory. However, as Gao et. al.
show in [2], if actors 3 and 4 read and write two tokens per exe-
cution, this graph is still strongly consistent but now requires
unbounded storage (consider, for example, what happens if actor
7 produces a single TRUE token followed by a large number of
FALSE tokens). So strong consistency does not imply bounded
memory requirements.

Strong consistency is based on the long term proportion of TRUE
tokens in the Boolean streams. A probabilistic interpretation for
this is given in [8]. If we replace these long term proportions with
a symbol representing the number (rather than proportion) of true
tokens over some short term firing sequence, we can obtain nec-
essary and sufficient conditions for existence of a bounded cyclic
schedule. This, in turn, is sufficient (though not necessary) for
bounded memory.

Using the techniques of [1], we would notice that and are
produced by the same actor and therefore have the same propor-
tion of true values, . Solving the balance equations given

p
i

Γ p() γ
ij

p
p

i

Γ p()

1 1− 0 0 0 0 0

0 1 p1−() 1− 0 0 0 0

0 0 1 0 p2 1−() 0 0

0 p1 0 1− 0 0 0

0 0 0 1 p2− 0 0

0 0 0 0 1 1− 0

0 1− 0 0 0 0 1

0 0 0 0 1− 0 1

=

r p()

Γ p() r p() 0=

b1 b2

p
b

SCHEDULING DYNAMIC DATAFLOW GRAPHS WITH BOUNDED MEMORY

USING THE TOKEN FLOW MODEL

Joseph T. Buck and Edward A. Lee

{jbuck,eal}@EECS.Berkeley.EDU

Dept. of EECS, University of California, Berkeley, CA 94720

— from: Proc. of ICASSP ‘93, Minneapolis, April, 1993 —

ABSTRACT

This paper builds upon research by Lee [1] concerning the token

flow model, an analytical model for the behavior of dataflow

graphs with data-dependent control flow, by analyzing the prop-

erties of cycles of the schedule: sequences of actor executions

that return the graph to its initial state. Necessary and sufficient

conditions are given for the existence of a bounded cyclic sched-

ule, as well as sufficient conditions for execution of the graph in

bounded memory. The techniques presented in this paper apply

to a more general class of dataflow graphs than existing meth-

ods.

MOTIVATION

Dataflow graphs have proven to be an effective representation for
problems in digital signal processing, both because the represen-
tation is natural for DSP researchers and because the representa-
tion exposes the parallelism of the algorithm and imposes
minimal constraints on the order of its evaluation. Since the rep-
resentation does not over-constrain the order of operations, a
scheduler has the freedom it needs to adequately exploit deep
pipelines, to maximize re-use of limited hardware resources, or
to exploit parallel processing units. To get these benefits, compil-
ers for pipelined or parallel machines often heavily rely on data-
flow analysis.

When the actors in the dataflow graph are restricted to be syn-
chronous (meaning that the number of tokens produced and con-
sumed by each actor is fixed and known at compile time),
powerful techniques exist for demonstrating the consistency of
the graph, determining memory requirements, and scheduling its
execution on one or more processors [3].

Graphs having only synchronous actors have completely deter-
ministic control flow. Therefore, the synchronous dataflow (SDF)
model is overly restrictive for digital signal processing, because
while typical DSP algorithms require relatively little run-time
decision-making, “little” is not the same as “none”. We therefore
seek to extend SDF techniques to work with more general data-
flow graphs.

KEY QUESTIONS

The following questions can be asked about any dataflow graph:

1. Do cyclic schedules exist? A cyclic schedule is a sequences
of actor executions that return the graph to its original state.

Graphs that lack cyclic schedules because of differences in
token flow rates are said to be inconsistent (see figure 1).

2. Does the graph have a bounded cyclic schedule? This ques-
tion is important if the graph is to be scheduled with a hard
real-time constraint.

3. Does the graph deadlock? A graph is deadlocked if it
reaches a configuration in which no actor can be executed.
This most often occurs due to directed loops with unsuffi-
cient delays (see figure 2).

4. Can the graph be scheduled to use bounded memory?

For synchronous dataflow graphs, algorithms exist to answer all
four questions for any graph [3]. The questions are answered by
solving the balance equations for the graph (the balance equa-
tions are discussed later in this paper in a more general form). If
there is a nontrivial solution, then it specifies the number of exe-
cutions of each actor required for a cyclic schedule (otherwise,
the answer to question 1 is no). A precedence graph is then con-
structed, as described in [3]. If this construction fails, the graph is
deadlocked. Otherwise, the graph does not deadlock, and ques-
tions 2 and 4 can be answered in the affirmative as well, because
if any schedule exists, it is bounded in both schedule length and
memory requirements.

When conditional actors are admitted, the questions become
more difficult and interesting, particularly the question of
bounded memory. The existence of cycles does not guarantee
that the cycle length will be bounded or that memory require-
ments are bounded.

The token flow model admits actors for which the number of
tokens produced and consumed on each arc is a function of the
data values of certain Boolean tokens. This paper gives necessary
and sufficient conditions for determining whether such a graph

1 2 3

1 1 1 1

2
1

Figure 1. An inconsistent dataflow graph.

1 2

1 1

1 1

Figure 2. A deadlocked dataflow graph.This work was supported by a grant from the Semiconductor Research

Corporation (93-DC-008)

